

Starting Out withFourth
Edition

Programming
Logic &
Design

This page intentionally left blank

Fourth
Edition

Programming
Logic &
Design

Starting Out with

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Tony Gaddis
Haywood Community College

Editorial Director: Marcia Horton
Executive Editor: Matt Goldstein
Executive Marketing Manager: Tim Galligan
Marketing Assistant: Jon Bryant
Editorial Assistant: Kelsey Loanes
Director of Marketing: Patrice Jones
Marketing Coordinator: Jane Campbell
Senior Managing Editor: Scott Disanno
Program Manager: Carole Snyder
Permissions Project Manager: Rachel Youdelman

Copyright © 2016, 2013, 2010 by Pearson Education, Inc. or its affiliates. All Rights Reserved. Printed in the United States
of America. This publication is protected by copyright, and permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions department, please visit www.pearsoned.com/permissions/.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their respective
owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or descriptive purposes
only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson’s
products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc. or its affiliates,
authors, licensees or distributors.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in
initial caps or all caps.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the
documents and related graphics published as part of the services for any purpose. All such documents and related graphics are
provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and
conditions with regard to this information, including all warranties and conditions of merchantability. Whether express, implied or
statutory, fitness for a particular.

Purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect
or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of
contract. Negligence or other tortious action, arising out of or in connection with the use or performance of information
available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes
are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time partial screen shots may be viewed in full
within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Library of Congress Cataloging-in-Publication Data
Gaddis, Tony, author.
 Starting out with programming logic & design / Tony Gaddis, Haywood Community College. — Fourth edition.
 pages cm
 ISBN 978-0-13-398507-8 — ISBN 0-13-398507-5
1. Computer programming. I. Title. II. Title: Starting out with programming logic and design.
 QA76.6.G315 2016
 005.1—dc23 2015000023

Managing Editor: Jeff Holcomb
Production Project Manager: Greg Dulles
Manufacturing Buyer: Maura Zaldivar
Cover Designer: Joyce Cosentino Wells
Cover Art: Monebook/Fotolia
Full-Service Project Management: Jogender
 Taneja/Aptara®, Inc.
Composition: Aptara®, Inc.
Printer/Bindery: Courier Kendallville
Cover Printer: Courier Kendallville

ISBN 10: 0-13-398507-5
ISBN 13: 978-0-13-398507-8

10 9 8 7 6 5 4 3 2 1

www.pearsoned.com/permissions/

Brief Contents

v

 Preface xiii

 Acknowledgments xxi

 About the Author xxiii

Chapter 1 Introduction to Computers and Programming 1

Chapter 2 Input, Processing, and Output 27

Chapter 3 Modules 81

Chapter 4 Decision Structures and Boolean Logic 123

Chapter 5 Repetition Structures 171

Chapter 6 Functions 227

Chapter 7 Input Validation 269

Chapter 8 Arrays 283

Chapter 9 Sorting and Searching Arrays 339

Chapter 10 Files 377

Chapter 11 Menu-Driven Programs 431

Chapter 12 Text Processing 477

Chapter 13 Recursion 499

Chapter 14 Object-Oriented Programming 521

Chapter 15 GUI Applications and Event-Driven Programming 567

Appendix A ASCII/Unicode Characters 587

Appendix B Flowchart Symbols 589

Appendix C Pseudocode Reference 591

Appendix D Converting Decimal Numbers to Binary 603

Appendix E Answers to Checkpoint Questions 605

 Index 621

This page intentionally left blank

 Preface vii

 Preface xiii

 Acknowledgments xxi

 About the Author xxiii

Chapter 1 Introduction to Computers and Programming 1

1.1 Introduction . 1

1.2 Hardware . 2

1.3 How Computers Store Data . 7

1.4 How a Program Works . 12

1.5 Types of Software . 20

Review Questions . 22

Chapter 2 Input, Processing, and Output 27

2.1 Designing a Program . 27

2.2 Output, Input, and Variables . 34

2.3 Variable Assignment and Calculations . 43

IN THE SPOTLIGHT: Calculating Cell Phone Overage Fees 47

IN THE SPOTLIGHT: Calculating a Percentage . 49

IN THE SPOTLIGHT: Calculating an Average . 52

IN THE SPOTLIGHT: Converting a Math Formula to a
Programming Statement . 55

2.4 Variable Declarations and Data Types . 57

2.5 Named Constants . 62

2.6 Hand Tracing a Program . 64

2.7 Documenting a Program . 65

IN THE SPOTLIGHT: Using Named Constants, Style Conventions,
and Comments . 66

2.8 Designing Your First Program . 68

Review Questions . 72

Debugging Exercises . 76

Programming Exercises . 77

Contents

vii

viii Contents

Chapter 3 Modules 81

3.1 Introduction to Modules . 81
3.2 Defining and Calling a Module . 84
IN THE SPOTLIGHT: Defining and Calling Modules . 90
3.3 Local Variables . 95
3.4 Passing Arguments to Modules . 98
IN THE SPOTLIGHT: Passing an Argument to a Module 102
IN THE SPOTLIGHT: Passing an Argument by Reference 108
3.5 Global Variables and Global Constants . 111
IN THE SPOTLIGHT: Using Global Constants . 112
Review Questions . 116
Debugging Exercises . 120
Programming Exercises . 120

Chapter 4 Decision Structures and Boolean Logic 123

4.1 Introduction to Decision Structures . 123
IN THE SPOTLIGHT: Using the If-Then Statement . 130
4.2 Dual Alternative Decision Structures . 133
IN THE SPOTLIGHT: Using the If-Then-Else Statement. 134
4.3 Comparing Strings . 139
4.4 Nested Decision Structures . 143
IN THE SPOTLIGHT: Multiple Nested Decision Structures 146
4.5 The Case Structure . 150
IN THE SPOTLIGHT: Using a Case Structure . 153
4.6 Logical Operators . 155
4.7 Boolean Variables . 162
Review Questions . 163
Debugging Exercises . 167
Programming Exercises . 168

Chapter 5 Repetition Structures 171

5.1 Introduction to Repetition Structures . 171
5.2 Condition-Controlled Loops: While, Do-While,

and Do-Until . 172
IN THE SPOTLIGHT: Designing a While Loop . 177
IN THE SPOTLIGHT: Designing a Do-While Loop . 186
5.3 Count-Controlled Loops and the For Statement 191
IN THE SPOTLIGHT: Designing a Count-Controlled Loop

with the For Statement. 199
5.4 Calculating a Running Total . 209
5.5 Sentinels . 213
IN THE SPOTLIGHT: Using a Sentinel . 214
5.6 Nested Loops . 217

 Contents ix

Review Questions . 220
Debugging Exercises . 223
Programming Exercises . 224

Chapter 6 Functions 227

6.1 Introduction to Functions: Generating Random Numbers 227
IN THE SPOTLIGHT: Using Random Numbers . 231
IN THE SPOTLIGHT: Using Random Numbers to Represent Other Values 234
6.2 Writing Your Own Functions . 236
IN THE SPOTLIGHT: Modularizing with Functions . 242
6.3 More Library Functions . 251
Review Questions . 261
Debugging Exercises . 264
Programming Exercises . 265

Chapter 7 Input Validation 269

7.1 Garbage In, Garbage Out . 269
7.2 The Input Validation Loop . 270
IN THE SPOTLIGHT: Designing an Input Validation Loop 272
7.3 Defensive Programming . 277
Review Questions . 278
Debugging Exercises . 280
Programming Exercises . 281

Chapter 8 Arrays 283

8.1 Array Basics . 283
IN THE SPOTLIGHT: Using Array Elements in a Math Expression 290
8.2 Sequentially Searching an Array . 297
8.3 Processing the Contents of an Array . 303
IN THE SPOTLIGHT: Processing an Array . 310
8.4 Parallel Arrays . 317
IN THE SPOTLIGHT: Using Parallel Arrays . 318
8.5 Two-Dimensional Arrays . 321
IN THE SPOTLIGHT: Using a Two-Dimensional Array . 325
8.6 Arrays of Three or More Dimensions . 330
Review Questions . 331
Debugging Exercises . 334
Programming Exercises . 335

Chapter 9 Sorting and Searching Arrays 339

9.1 The Bubble Sort Algorithm . 339
IN THE SPOTLIGHT: Using the Bubble Sort Algorithm . 346
9.2 The Selection Sort Algorithm . 353

x Contents

9.3 The Insertion Sort Algorithm . 359
9.4 The Binary Search Algorithm . 365
IN THE SPOTLIGHT: Using the Binary Search Algorithm 369
Review Questions . 371
Debugging Exercise . 375
Programming Exercises . 375

Chapter 10 Files 377

10.1 Introduction to File Input and Output . 377
10.2 Using Loops to Process Files . 389
IN THE SPOTLIGHT: Working with Files . 394
10.3 Using Files and Arrays . 398
10.4 Processing Records . 399
IN THE SPOTLIGHT: Adding and Displaying Records . 404
IN THE SPOTLIGHT: Searching for a Record . 408
IN THE SPOTLIGHT: Modifying Records . 410
IN THE SPOTLIGHT: Deleting Records . 414
10.5 Control Break Logic . 417
IN THE SPOTLIGHT: Using Control Break Logic . 418
Review Questions . 424
Debugging Exercise . 427
Programming Exercises . 427

Chapter 11 Menu-Driven Programs 431

11.1 Introduction to Menu-Driven Programs . 431
11.2 Modularizing a Menu-Driven Program . 442
11.3 Using a Loop to Repeat the Menu . 447
IN THE SPOTLIGHT: Designing a Menu-Driven Program 452
11.4 Multiple-Level Menus . 466
Review Questions . 472
Programming Exercises . 474

Chapter 12 Text Processing 477

12.1 Introduction . 477
12.2 Character-by-Character Text Processing . 479
IN THE SPOTLIGHT: Validating a Password . 482
IN THE SPOTLIGHT: Formatting and Unformatting Telephone Numbers 488
Review Questions . 493
Debugging Exercises . 495
Programming Exercises . 496

 Contents xi

Chapter 13 Recursion 499

13.1 Introduction to Recursion . 499
13.2 Problem Solving with Recursion . 502
13.3 Examples of Recursive Algorithms . 506
Review Questions . 516
Programming Exercises . 519

Chapter 14 Object-Oriented Programming 521

14.1 Procedural and Object-Oriented Programming 521
14.2 Classes . 525
14.3 Using the Unified Modeling Language to Design Classes 536
14.4 Finding the Classes and Their Responsibilities in a Problem 539
IN THE SPOTLIGHT: Finding the Classes in a Problem . 539
IN THE SPOTLIGHT: Determining Class Responsibilities 543
14.5 Inheritance . 549
14.6 Polymorphism . 557
Review Questions . 561
Programming Exercises . 565

Chapter 15 GUI Applications and Event-Driven
Programming 567

15.1 Graphical User Interfaces . 567
15.2 Designing the User Interface for a GUI Program 570
IN THE SPOTLIGHT: Designing a Window . 575
15.3 Writing Event Handlers . 577
IN THE SPOTLIGHT: Designing an Event Handler . 580
Review Questions . 582
Programming Exercises . 584

Appendix A ASCII/Unicode Characters 587

Appendix B Flowchart Symbols 589

Appendix C Pseudocode Reference 591

Appendix D Converting Decimal Numbers to Binary 603

Appendix E Answers to Checkpoint Questions 605

 Index 621

This page intentionally left blank

xiii

Welcome to Starting Out with Programming Logic and Design, Fourth Edition.
This book uses a language-independent approach to teach programming
 concepts and problem-solving skills, without assuming any previous pro-

gramming experience. By using easy-to-understand pseudocode, flowcharts, and other
tools, the student learns how to design the logic of programs without the complication
of language syntax.

Fundamental topics such as data types, variables, input, output, control structures,
modules, functions, arrays, and files are covered as well as object-oriented concepts,
GUI development, and event-driven programming. As with all the books in the Starting
Out With . . . series, this text is written in clear, easy-to-understand language that stu-
dents find friendly and inviting.

Each chapter presents a multitude of program design examples. Short examples that
highlight specific programming topics are provided, as well as more involved examples
that focus on problem solving. Each chapter includes at least one In the Spotlight sec-
tion that provides step-by-step analysis of a specific problem and demonstrates a solu-
tion to that problem.

This book is ideal for a programming logic course that is taught as a precursor to a
language-specific introductory programming course, or for the first part of an intro-
ductory programming course in which a specific language is taught.

Changes in the Fourth Edition
This book’s pedagogy, organization, and clear writing style remain the same as in the
previous edition. Many improvements have been made, which are summarized here:

● An explanation of read-only memory, or ROM, has been added to Chapter 1.
● The section on secondary storage in Chapter 1 has been updated to include a

discussion on cloud storage.
● IPO charts are now introduced in Chapter 2.
● A discussion about adding parentheses to a math expression to enhance the

expression’s clarity, even when they are unnecessary to get the correct result, has
been added to Chapter 2.

● Off-page connectors for flowcharts have been introduced in Chapter 2, and
added to the flowchart reference in Appendix B.

● A discussion on easier maintenance as an additional benefit of modularization
has been added to Chapter 3.

● A cautionary warning about the use of reference variables has been added to
Chapter 3.

● The section on local variables in Chapter 3 has been expanded with an additional
example and a diagram showing the scope of two variables with the same name
in different modules.

Preface

xiv Preface

● A discussion on how the order of subexpressions in a compound Boolean expres-
sion can affect code efficiency in a language that performs short-circuit evalua-
tion has been added to Chapter 4.

● A discussion on how and why statements that call functions are written differ-
ently than statements that call modules has been added to Chapter 6.

● A discussion on how some of the more popular languages always pass arrays by
reference has been added to Chapter 8.

● A new and better example of control-break processing has been added to
 Chapter 10.

● Appendix D is a new appendix on converting decimal numbers to binary.
● New motivational programming exercises have been added to several chapters.
● The book’s Language Reference Guides have been updated. All of the book’s

Language Reference Guides are available on the book’s resource site at www.
pearsonhighered.com/gaddis.

● A new application, Flowgorithm, is available to support the book. Flowgorithm
is free software that allows you to create programs using simple flowcharts. It
may be downloaded from www.flowgorithm.org.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter begins by giving a concise and easy-to-understand explanation of how
computers work, how data is stored and manipulated, and why we write programs in
high-level languages.

Chapter 2: Input, Processing, and Output

This chapter introduces the program development cycle, data types, variables, and
sequence structures. The student learns to use pseudocode and flowcharts to design simple
programs that read input, perform mathematical operations, and produce screen output.

Chapter 3: Modules

This chapter demonstrates the benefits of modularizing programs and using the top-down
design approach. The student learns to define and call modules, pass arguments to mod-
ules, and use local variables. Hierarchy charts are introduced as a design tool.

Chapter 4: Decision Structures and Boolean Logic

In this chapter students explore relational operators and Boolean expressions and are
shown how to control the flow of a program with decision structures. The If-Then,
If-Then-Else, and If-Then-Else If statements are covered. Nested decision struc-
tures, logical operators, and the case structure are also discussed.

Chapter 5: Repetition Structures

This chapter shows the student how to use loops to create repetition structures. The
While, Do-While, Do-Until, and For loops are presented. Counters, accumulators,
running totals, and sentinels are also discussed.

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis
www.flowgorithm.org

 Preface xv

Chapter 6: Functions

This chapter begins by discussing common library functions, such as those for generat-
ing random numbers. After learning how to call library functions and how to use
 values returned by functions, the student learns how to define and call his or her
own functions.

Chapter 7: Input Validation

This chapter discusses the importance of validating user input. The student learns to
write input validation loops that serve as error traps. Defensive programming and the
importance of anticipating obvious as well as unobvious errors is discussed.

Chapter 8: Arrays

In this chapter the student learns to create and work with one- and two-dimensional
arrays. Many examples of array processing are provided including examples illustrat-
ing how to find the sum, average, and highest and lowest values in an array, and how
to sum the rows, columns, and all elements of a two-dimensional array. Programming
techniques using parallel arrays are also demonstrated.

Chapter 9: Sorting and Searching Arrays

In this chapter the student learns the basics of sorting arrays and searching for data
stored in them. The chapter covers the bubble sort, selection sort, insertion sort, and
binary search algorithms.

Chapter 10: Files

This chapter introduces sequential file input and output. The student learns to read
and write large sets of data, store data as fields and records, and design programs
that work with both files and arrays. The chapter concludes by discussing control
break processing.

Chapter 11: Menu-Driven Programs

In this chapter the student learns to design programs that display menus and execute
tasks according to the user’s menu selection. The importance of modularizing a menu-
driven program is also discussed.

Chapter 12: Text Processing

This chapter discusses text processing at a detailed level. Algorithms that step through
the individual characters in a string are discussed, and several common library func-
tions for character and text processing are introduced.

Chapter 13: Recursion

This chapter discusses recursion and its use in problem solving. A visual trace of recur-
sive calls is provided, and recursive applications are discussed. Recursive algorithms
for many tasks are presented, such as finding factorials, finding a greatest common
denominator (GCD), summing a range of values in an array, and performing a binary
search. The classic Towers of Hanoi example is also presented.

xvi Preface

Chapter 14: Object-Oriented Programming

This chapter compares procedural and object-oriented programming practices. It cov-
ers the fundamental concepts of classes and objects. Fields, methods, access specifica-
tion, constructors, accessors, and mutators are discussed. The student learns how to
model classes with UML and how to find the classes in a particular problem.

Chapter 15: GUI Applications and Event-Driven Programming

This chapter discusses the basic aspects of designing a GUI application. Building graphical
user interfaces with visual design tools (such as Visual Studio® or NetBeans™) is discussed.
The student learns how events work in a GUI application and how to write event handlers.

Appendix A: ASCII/Unicode Characters

This appendix lists the ASCII character set, which is the same as the first 127 Unicode
character codes.

Appendix B: Flowchart Symbols

This appendix shows the flowchart symbols that are used in this book.

Appendix C: Pseudocode Reference

This appendix provides a quick reference for the pseudocode language that is used in
the book.

Appendix D: Converting Decimal Numbers to Binary

This appendix uses a simple tutorial to demonstrate how to convert a decimal number
to binary.

Appendix E: Answers to Checkpoint Questions

This appendix provides answers to the Checkpoint questions that appear throughout
the text.

Organization of the Text
The text teaches programming logic and design in a step-by-step manner. Each chap-
ter covers a major set of topics and builds knowledge as students progress through
the book. Although the chapters can be easily taught in their existing sequence, there
is some flexibility. Figure P-1 shows chapter dependencies. Each box represents a
chapter or a group of chapters. A chapter to which an arrow points must be covered
before the chapter from which the arrow originates. The dotted line indicates that
only a portion of Chapter 10 depends on information presented in Chapter 8.

Features of the Text
Concept Statements. Each major section of the text starts with a concept state-
ment. This statement concisely summarizes the main point of the section.

 Preface xvii

Figure P-1 Chapter dependencies

NOTE: Notes appear at several places throughout the text. They are short expla-
nations of interesting or often misunderstood points relevant to the topic at hand.

TIP: Tips advise the student on the best techniques for approaching different pro-
gramming or animation problems.

VideoNote

Example Programs. Each chapter has an abundant number of complete and partial
example programs, each designed to highlight the current topic. Pseudocode, flow-
charts, and other design tools are used in the example programs.

In the Spotlight. Each chapter has one or more In the
Spotlight case studies that provide detailed, step-by-step
analysis of problems, and show the student how to
solve them.

VideoNotes. A series of online videos, developed specifically for this book, are avail-
able for viewing at www.pearsonhighered.com/gaddis. Icons appear throughout the
text alerting the student to videos about specific topics.

www.pearsonhighered.com/gaddis

xviii Preface

WARNING! Warnings caution students about programming techniques or prac-
tices that can lead to malfunctioning programs or lost data.

Programming Language Companions. Many of the pseudocode programs
shown in this book have also been written in Java, Python, and Visual Basic. These
programs appear in the programming language companions that are available at www.
pearsonhighered.com/gaddis. Icons appear next to each pseudocode program that
also appears in the language companions.

Checkpoints. Checkpoints are questions placed at intervals throughout each chapter.
They are designed to query the student’s knowledge quickly after learning a new topic.

Review Questions. Each chapter presents a thorough and diverse set of Review
Questions and exercises. They include Multiple Choice, True/False, Short Answer, and
Algorithm Workbench.

Debugging Exercises. Most chapters provide a set of debugging exercises in which
the student examines a set of pseudocode algorithms and identifies logical errors.

Programming Exercises. Each chapter offers a pool of Programming Exercises
designed to solidify the student’s knowledge of the topics currently being studied.

Supplements

Student Online Resources

Many student resources are available for this book from the publisher. The following
items are available on the Gaddis Series resource page at www.pearsonhighered.
com/gaddis:

•	 Access	to	the	book’s	companion	VideoNotes

An extensive series of online VideoNotes have been developed to accompany this
text. Throughout the book, VideoNote icons alert the student to videos covering spe-
cific topics. Additionally, one programming exercise at the end of each chapter has an
accompanying VideoNote explaining how to develop the problem’s solution.

•	 	Access	to	the	Language	Companions	for	Python,	Java,	Visual	
Basic, and C++

Programming language companions specifically designed to accompany the Fourth
Edition of this textbook are available for download. The companions introduce the
Java™, Python®, Visual Basic®, and C++ programming languages, and correspond
on a chapter-by-chapter basis with the textbook. Many of the pseudocode programs
that appear in the textbook also appear in the companions, implemented in a spe-
cific programming language.

•	 A	link	to	download	the	Flowgorithm	flowcharting	application

Flowgorithm is a free application, developed by Devin Cook at Sacramento State
University, which allows you to create programs using simple flowcharts. It supports

www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis
www.pearsonhighered.com/gaddis

 Preface xix

the flowcharting conventions used in this textbook, as well as several other standard
conventions. When you create a flowchart with Flowgorithm, you can execute the
program and generate Gaddis Pseudocode. You can also generate source code in Java,
Python, Visual Basic, C#, Ruby, JavaScript, and several other languages. For more
information, see www.flowgorithm.org.

•	 A	link	to	download	the	RAPTOR	flowcharting	environment

RAPTOR is a flowchart-based programming environment developed by the US Air
Force Academy Department of Computer Science.

Instructor Resources

The following supplements are available to qualified instructors only:

•	 Answers to all of the Review Questions
•	 Solutions for the Programming Exercises
•	 PowerPoint® presentation slides for each chapter
•	 Test bank

Visit the Pearson Instructor Resource Center (http://www.pearsonhighered.
com/irc) or send an email to computing@aw.com for information on how to access
them.

www.flowgorithm.org
http://www.pearsonhighered.com/irc
http://www.pearsonhighered.com/irc
mailto:computing@aw.com

This page intentionally left blank

 Preface xxi

There have been many helping hands in the development and publication of this text.
I would like to thank the following faculty reviewers:

Reviewers for This Edition

Alan Anderson
Gwinnett Technical College

Richard J. Davison
College of the Albemarle

Sameer Dutta
Grambling State University

Norman P. Hahn
Thomas Nelson Community College

John Haley
Athens Technical College

Dianne Hill
Jackson College

J. Shawn Pope
Tulsa Community College

Linda Reeser
Arizona Western College

Homayoun Sharafi
Prince George’s Community College

Emily Shepard
Central Carolina Community College

Maryam Rahnemoonfar
Texas A&M University

Scott Vanselow
Edison State College

Reviewers of Previous Editions

Reni Abraham
Houston Community College

Cherie Aukland
Thomas Nelson Community College

Steve Browning
Freed Hardeman University

Acknowledgments

xxi

xxii Acknowledgments

John P. Buerck
Saint Louis University

Jill Canine
Ivy Tech Community College of Indiana

Steven D. Carver
Ivy Tech Community College

Stephen Robert Cheskiewicz
Keystone College and Wilkes University

Katie Danko
Grand Rapids Community College

Ronald J. Harkins
Miami University, OH

Coronicca Oliver
Coastal Georgia Community College

Robert S. Overall, III
Nashville State Community College

Dale T. Pickett
Baker College of Clinton Township

Tonya Pierce
Ivy Tech Community College

Larry Strain
Ivy Tech Community College–Bloomington

Donald Stroup
Ivy Tech Community College

John Thacher
Gwinnett Technical College

Jim Turney
Austin Community College

Scott Vanselow
Edison State College

I also want to thank everyone at Pearson for making the Starting Out With . . . series
so successful. I have worked so closely with the team at Pearson that I consider them
among my closest friends. I am extremely fortunate to have Matt Goldstein as my edi-
tor, and Kelsey Loanes as Editorial Assistant. They have guided me through the process
of revising this, and many other books. I am also fortunate to have Demetrius Hall and
Bram Van Kempen as Marketing Managers. Their hard work is truly inspiring, and
they do a great job getting my books out to the academic community. The production
team worked tirelessly to make this book a reality. Thanks to you all!

About the Author

Tony Gaddis is the principal author of the Starting Out With . . . series of textbooks.
Tony has twenty years of experience teaching computer science courses, primarily at
Haywood Community College. He is a highly acclaimed instructor who was previously
selected as the North Carolina Community College “Teacher of the Year” and has
received the Teaching Excellence award from the National Institute for Staff and
Organizational Development. The Starting Out With . . . series includes introductory
books covering Programming Logic and Design, C++, Java, Microsoft® Visual Basic,
C#®, Python, App Inventor, and Alice, all published by Pearson.

xxiii

This page intentionally left blank

TOPICS

1.1 Introduction

1.2 Hardware

1.3 How Computers Store Data

1.4 How a Program Works

1.5 Types of Software

Introduction to Computers
and Programming

 1.1 Introduction
Think about some of the different ways that people use computers. In school, students
use computers for tasks such as writing papers, searching for articles, sending email,
and participating in online classes. At work, people use computers to analyze data,
make presentations, conduct business transactions, communicate with customers and
coworkers, control machines in manufacturing facilities, and many other things. At
home, people use computers for tasks such as paying bills, shopping online, communi-
cating with friends and family, and playing computer games. And don’t forget that
smart phones, tablets, iPods®, car navigation systems, and many other devices are
computers too. The uses of computers are almost limitless in our everyday lives.

Computers can do such a wide variety of things because they can be programmed. This
means that computers are not designed to do just one job, but to do any job that their
programs tell them to do. A program is a set of instructions that a computer follows to
perform a task. For example, Figure 1-1 shows screens from two commonly used
p rograms: Microsoft Word and PowerPoint.

C
H

A
P

T
E

R

1

1

2 Chapter 1 Introduction to Computers and Programming

Programs are commonly referred to as software. Software is essential to a computer
because without software, a computer can do nothing. All of the software that we use
to make our computers useful is created by individuals known as programmers or soft-
ware developers. A programmer, or software developer, is a person with the training
and skills necessary to design, create, and test computer programs. Computer pro-
gramming is an exciting and rewarding career. Today, you will find programmers
working in business, medicine, government, law enforcement, agriculture, academics,
entertainment, and almost every other field.

This book introduces you to the fundamental concepts of computer programming.
Before we begin exploring those concepts, you need to understand a few basic things
about computers and how they work. This chapter will build a solid foundation of
knowledge that you will continually rely on as you study computer science. First, we
will discuss the physical components that computers are commonly made of. Next, we
will look at how computers store data and execute programs. Finally, we will discuss
the major types of software that computers use.

Figure 1-1 Commonly used programs (photo courtesy of Microsoft Corporation)

 1.2 Hardware

CONCEPT: The physical devices that a computer is made of are referred to as the
computer’s hardware. Most computer systems are made of similar
hardware devices.

The term hardware refers to all of the physical devices, or components, that a com-
puter is made of. A computer is not one single device, but a system of devices that all
work together. Like the different instruments in a symphony orchestra, each device in
a computer plays its own part.

If you have ever shopped for a computer, you’ve probably seen sales literature listing
components such as microprocessors, memory, disk drives, video displays, graphics
cards, and so on. Unless you already know a lot about computers, or at least have a

 1.2 Hardware 3

friend who does, understanding what these different components do can be confus-
ing. As shown in Figure 1-2, a typical computer system consists of the following
major components:

● The central processing unit (CPU)
● Main memory
● Secondary storage devices
● Input devices
● Output devices

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

Figure 1-2 Typical components of a computer system (all photos © Shutterstock)

Let’s take a closer look at each of these components.

The CPU
When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is
the part of a computer that actually runs programs. (The CPU is often referred to as the
processor.) The CPU is the most important component in a computer because without
it, the computer could not run software.

4 Chapter 1 Introduction to Computers and Programming

In the earliest computers, CPUs were huge devices made of electrical and mechanical
components such as vacuum tubes and switches. Figure 1-3 shows such a device. The
two women in the photo are working with the historic ENIAC computer. The ENIAC,
considered by many to be the world’s first programmable electronic computer, was
built in 1945 to calculate artillery ballistic tables for the U.S. Army. This machine,
which was primarily one big CPU, was 8 feet tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of
a lab technician holding a modern-day microprocessor. In addition to being much
smaller than the old electro-mechanical CPUs in early computers, microprocessors are
also much more powerful.

Figure 1-3 The ENIAC computer (photo courtesy of US Army Center of Military History)

Figure 1-4 A lab technician holds a modern microprocessor (photo courtesy of
Chris Ryan/OJO Images/Getty Images)

 1.2 Hardware 5

Main Memory
You can think of main memory as the computer’s work area. This is where the c omputer
stores a program while the program is running, as well as the data that the p rogram is
working with. For example, suppose you are using a word processing program to write
an essay for one of your classes. While you do this, both the word p rocessing program
and the essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are erased.
Inside your computer, RAM is stored in chips, similar to the ones shown in Figure 1-5.

Figure 1-5 Memory chips (photo © Garsya/Shutterstock)

Secondary Storage Devices
Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary
memory and loaded into main memory as needed. Important data, such as word process-
ing documents, payroll data, and inventory records, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A traditional disk
drive stores data by magnetically encoding it onto a circular disk. Solid state drives,
which store data in solid-state memory, are increasingly becoming popular. A solid state
drive has no moving parts, and operates faster than a traditional disk drive. Most com-
puters have some sort of secondary storage device, either a traditional disk drive or a
solid state drive, mounted inside their case. External disk drives, which connect to one of
the computer’s communication ports, are also available. External disk drives can be used
to create backup copies of important data or to move data to another computer.

In addition to external disk drives, many types of devices have been created for copying
data, and for moving it to other computers. Universal Serial Bus drives, or USB drives, are
small devices that plug into the computer’s USB port, and appear to the system as a disk

NOTE: Another type of memory that is stored in chips inside the computer is read-only
memory, or ROM. A computer can read the contents of ROM, but it cannot change its
contents, or store additional data there. ROM is nonvolatile, which means that it does
not lose its contents, even when the computer’s power is turned off. ROM is typically
used to store programs that are important for the system’s operation. One example is
the computer’s startup program, which is executed each time the computer is started.

6 Chapter 1 Introduction to Computers and Programming

drive. These drives do not actually contain a disk, however. They store data in a special type
of memory known as flash memory. USB drives, which are also known as memory sticks
and flash drives, are inexpensive, reliable, and small enough to be c arried in your pocket.

Optical devices such as the CD (compact disc) and the DVD (digital versatile disc) are
also used for data storage. Data is not recorded magnetically on an optical disc, but is
encoded as a series of pits on the disc surface. CD and DVD drives use a laser to detect
the pits and thus read the encoded data. Optical discs hold large amounts of data, and
because recordable CD and DVD drives are now commonplace, they are good me diums
for creating backup copies of data.

NOTE: In recent years, cloud storage has become a popular way to store data.
When you store data in the cloud, you are storing it on a remote server via the Inter-
net, or via a company’s private network. When your data is stored in the cloud, you
can access it from many different devices, and from any location where you have a
network connection. Cloud storage can also be used to back up important data that
is stored on a computer’s disk.

Input Devices
Input is any data the computer collects from people and from other devices. The compo-
nent that collects the data and sends it to the computer is called an input device. Com-
mon input devices are the keyboard, mouse, touchscreen, scanner, microphone, and
digital camera. Disk drives and optical drives can also be considered input devices because
programs and data are retrieved from them and loaded into the computer’s memory.

Output Devices
Output is any data the computer produces for people or for other devices. It might be
a sales report, a list of names, or a graphic image. The data is sent to an output device,
which formats and presents it. Common output devices are video displays and printers.
Disk drives and CD recorders can also be considered output devices because the system
sends data to them in order to be saved.

 Checkpoint

 1.1 What is a program?

 1.2 What is hardware?

 1.3 List the five major components of a computer system.

 1.4 What part of the computer actually runs programs?

 1.5 What part of the computer serves as a work area to store a program and its
data while the program is running?

 1.6 What part of the computer holds data for long periods of time, even when
there is no power to the computer?

 1.7 What part of the computer collects data from people and from other devices?

 1.8 What part of the computer formats and presents data for people or other devices?

 1.3 How Computers Store Data 7

 1.3 How Computers Store Data

CONCEPT: All data that is stored in a computer is converted to sequences of 0s
and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte
is only enough memory to store a letter of the alphabet or a small number. In order to
do anything meaningful, a computer has to have lots of bytes. Most computers today
have millions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term
bit stands for binary digit. Computer scientists usually think of bits as tiny switches
that can be either on or off. Bits aren’t actual “switches,” however, at least not in
the conventional sense. In most computer systems, bits are tiny electrical compo-
nents that can hold either a positive or a negative charge. Computer scientists think
of a positive charge as a switch in the on position, and a negative charge as a switch
in the off position. F igure 1-6 shows the way that a computer scientist might think
of a byte of memory: as a collection of switches that are each flipped to either the
on or off position.

OFF

ON

OFF OFFOFF

ON ON ON

Figure 1-6 Think of a byte as eight switches

When a piece of data is stored in a byte, the computer sets the eight bits to an on/
off pattern that represents the data. For example, the pattern shown on the left in
Figure 1-7 shows how the number 77 would be stored in a byte, and the pattern on
the right shows how the letter A would be stored in a byte. In a moment you will
see how these patterns are determined.

The number 77 stored in a byte. The letter A stored in a byte.

OFF

ON

OFF OFFOFF

ON ON ON

OFF

ON

OFF OFF OFF OFF OFF

ON

Figure 1-7 Bit patterns for the number 77 and the letter A

8 Chapter 1 Introduction to Computers and Programming

To determine the value of a binary number you simply add up the position values of all
the 1s. For example, in the binary number 10011101, the position values of the 1s are
1, 4, 8, 16, and 128. This is shown in Figure 1-10. The sum of all of these position
values is 157. So, the value of the binary number 10011101 is 157.

Storing Numbers
A bit can be used in a very limited way to represent numbers. Depending on whether
the bit is turned on or off, it can represent one of two different values. In computer
systems, a bit that is turned off represents the number 0 and a bit that is turned on
represents the number 1. This corresponds perfectly to the binary numbering sys-
tem. In the binary numbering system (or binary, as it is usually called) all numeric
values are written as sequences of 0s and 1s. Here is an example of a number that is
written in binary:

 10011101

The position of each digit in a binary number has a value assigned to it. Starting with
the rightmost digit and moving left, the position values are 20, 21, 22, 23, and so
forth, as shown in Figure 1-8. Figure 1-9 shows the same diagram with the position
values calculated. Starting with the rightmost digit and moving left, the position val-
ues are 1, 2, 4, 8, and so forth.

1 0 0 1 1 1 0 1
20

21

22

23

24

25

26

27

Figure 1-8 The values of binary digits as powers of 2

1 0 0 1 1 1 0 1
 1
 2
 4
 8
 16
 32
 64
128

Figure 1-9 The values of binary digits

 1.3 How Computers Store Data 9

1 0 0 1 1 1 0 1
 1

 4
 8
 16

128

1 + 4 + 8 + 16 + 128 = 157

Figure 1-10 Determining the value of 10011101

Figure 1-11 shows how you can picture the number 157 stored in a byte of memory.
Each 1 is represented by a bit in the on position, and each 0 is represented by a bit in
the off position.

128 + 16 + 8 + 4 + 1 = 157

128 64 32 16 8 4 2 1
Position
values

1

0

111 1

0 0

Figure 1-11 The bit pattern for 157

When all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0.
When all of the bits in a byte are set to 1 (turned on), then the byte holds the largest
value that can be stored in it. The largest value that can be stored in a byte is 1 + 2 + 4 +
8 + 16 + 32 + 64 + 128 = 255. This limit exists because there are only eight bits in a byte.

What if you need to store a number larger than 255? The answer is simple: use more
than one byte. For example, suppose we put two bytes together. That gives us 16 bits.
The position values of those 16 bits would be 20, 21, 22, 23, and so forth, up through
215. As shown in Figure 1-12, the maximum value that can be stored in two bytes is
65,535. If you need to store a number larger than this, then more bytes are necessary.

32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 65535

128 64 32 16 8 4 2 116384 8192 4096 2048 512 256102432768Position
values

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1-12 Two bytes used for a large number

